Call: 99207 31975
Acne Clinical Treatment
ACNE
A disease that affects the skin's oil glands. The small holes in your skin (pores) connect to oil glands under the skin. These glands make a substance called sebum. The pores connect to the glands by a canal called a follicle. When the follicle of a skin gland clogs up, a pimple grows. Acne is the most common skin disease; an estimated 80 percent of all people have acne at some point. Early treatment is the best way to prevent scars. Dr. Smita will suggest treatment on case to case basis. .
In medical terms, Acne, also known as acne vulgaris, is a long-term skin disease that occurs when hair follicles are clogged with dead skin cells and oil from the skin. It is characterized by blackheads or whiteheads, pimples, oily skin, and possible scarring. It primarily affects areas of the skin with a relatively high number of oil glands, including the face, upper part of the chest, and back. The resulting appearance can lead to anxiety, reduced self-esteem and, in extreme cases, depression or thoughts of suicide.
Based on Severity of acne vulgaris can be classified as,
· Mild
Mild acne is classically defined by the presence of clogged skin follicles (known as comedones) limited to the face with occasional inflammatory lesions.
· Moderate
Moderate severity acne is said to occur when a higher number of inflammatory papules and pustules occur on the face compared to mild cases of acne and are found on the trunk of the body.
· Severe
Severe acne is said to occur when nodules (the painful 'bumps' lying under the skin) are the characteristic facial lesions and involvement of the trunk is extensive.
Symptoms
Scars
Acne scars are caused by inflammation within the dermal layer of skin and are estimated to affect 95% of people with acne vulgaris. The scar is created by abnormal healing following this dermal inflammation. Scarring is most likely to take place with severe acne, but may occur with any form of acne vulgaris. Acne scars are classified based on whether the abnormal healing response following dermal inflammation leads to excess collagen deposition or loss at the site of the acne lesion.
Atrophic acne scars have lost collagen from the healing response and are the most common type of acne scar (account for approximately 75% of all acne scars). They may be further classified as ice-pick scars, boxcar scars, and rolling scars.
· Ice-pick scars are narrow (less than 2 mm across), deep scars that extend into the dermis.
· Boxcar scars are round or ovoid indented scars with sharp borders and vary in size from 1.5–4 mm across.
· Rolling scars are wider than icepick and boxcar scars (4–5 mm across) and have a wave-like pattern of depth in the skin.
Hypertrophic scars are uncommon, and are characterized by increased collagen content after the abnormal healing response. They are described as firm and raised from the skin. Hypertrophic scars remain within the original margins of the wound, whereas keloid scars can form scar tissue outside of these borders. Keloid scars from acne occur more often in men and people with darker skin, and usually occur on the trunk of the body.
Pigmentation
Post inflammatory hyperpigmentation (PIH) is usually the result of nodular acne lesions. These lesions often leave behind an inflamed darkened mark after the original acne lesion has resolved. This inflammation stimulates specialized pigment-producing skin cells (known as melanocytes) to produce more melanin pigment which leads to the skin's darkened appearance. People with darker skin color are more frequently affected by this condition. Pigmented scar is a common term used for PIH, but is misleading as it suggests the color change is permanent. Often, PIH can be prevented by avoiding any aggravation of the nodule, and can fade with time. However, untreated PIH can last for months, years, or even be permanent if deeper layers of skin are affected. Even minimal skin exposure to the sun's ultraviolet rays can sustain hyperpigmentation. Daily use of SPF 15 or higher sunscreen can minimize such a risk.
Causes
Risk factors for the development of acne, other than genetics, have not been conclusively identified. Possible secondary contributors include hormones, infections, diet and stress. Studies investigating the impact of smoking on the incidence and severity of acne have been inconclusive. Sunlight and cleanliness are not associated with acne.
· Genes
The predisposition to acne for specific individuals is likely explained by a genetic component, a theory which is supported by studies examining the rates of acne among twins and first-degree relatives. Severe acne may be associated with XYY syndrome. Acne susceptibility is likely due to the influence of multiple genes, as the disease does not follow a classic (Mendelian) inheritance pattern. Multiple gene candidates have been proposed including certain variations in tumor necrosis factor-alpha (TNF-alpha), IL-1 alpha, and CYP1A1 genes, among others. Increased risk is associated with the 308 G/A single nucleotide polymorphism variation in the gene for TNF.
· Hormones
Hormonal activity, such as occurs during menstrual cycles and puberty, may contribute to the formation of acne. During puberty, an increase in sex hormones called androgens causes the skin follicle glands to grow larger and make more oily sebum. Several hormones have been linked to acne, including the androgens testosterone, dihydrotestosterone (DHT), and dehydroepiandrosterone (DHEA); high levels of growth hormone (GH) and insulin-like growth factor 1 (IGF-1) have also been associated with worsened acne. Both androgens and IGF-1 seem to be essential for acne to occur, as acne does not develop in individuals with complete androgen insensitivity syndrome (CAIS) or Laron syndrome (insensitivity to GH, resulting in very low IGF-1 levels).
Medical conditions that commonly cause a high-androgen state, such as polycystic ovary syndrome, congenital adrenal hyperplasia, and androgen-secreting tumors, can cause acne in affected individuals. Conversely, people who lack androgenic hormones or are insensitive to the effects of androgens rarely have acne. An increase in androgen and oily sebum synthesis may be seen during pregnancy. Acne can be a side effect of testosterone replacement therapy or of anabolic steroid use. Over-the-counter bodybuilding and dietary supplements are commonly found to contain illegally added anabolic steroids.
· Infections
It is widely suspected that the anaerobic bacterial species Propionibacterium acnes (P. acnes) contributes to the development of acne, but its exact role is not well understood. There are specific sub-strains of P. acnes associated with normal skin, and moderate or severe inflammatory acne. It is unclear whether these undesirable strains evolve on-site or are acquired, or possibly both depending on the person. These strains have the capability of changing, perpetuating, or adapting to the abnormal cycle of inflammation, oil production, and inadequate sloughing of dead skin cells from acne pores. Infection with the parasitic mite Demodex is associated with the development of acne. It is unclear whether eradication of the mite improves acne.
· Diet
The relationship between diet and acne is unclear, as there is no high-quality evidence that establishes any definitive link between them. High-glycemic-load diets have been found to have different degrees of effect on acne severity. Multiple randomized controlled trials and nonrandomized studies have found a lower-glycemic-load diet to be effective in reducing acne. There is weak observational evidence suggesting that dairy milk consumption is positively associated with a higher frequency and severity of acne. Milk contains whey protein and hormones such as bovine IGF-1 and precursors of dihydrotestosterone. These components are hypothesized to promote the effects of insulin and IGF-1 and thereby increase the production of androgen hormones, sebum, and promote the formation of comedones. Available evidence does not support a link between eating chocolate or salt and acne severity. Chocolate does contain varying amounts of sugar, which can lead to a high glycemic load, and it can be made with or without milk. Few studies have examined the relationship between obesity and acne. Vitamin B12 may trigger skin outbreaks similar to acne (acneiform eruptions), or worsen existing acne, when taken in doses exceeding the recommended daily intake. Eating greasy foods does not increase acne nor make it worse. One review linked a Western pattern diet, high in simple carbohydrates, milk and dairy products, and trans fats and saturated fats, along with a low omega-3 fatty acids, with acne.
· Stress
Few high-quality studies have been performed which demonstrate that stress causes or worsens acne. While the connection between acne and stress has been debated, some research indicates that increased severity is associated with high stress levels in certain contexts such as hormonal changes seen in premenstrual syndrome.
· Environmental factors
Mechanical obstruction of skin follicles with helmets or chinstraps can worsen pre-existing acne.
· Medications
Several medications can worsen pre-existing acne, consult Dr. Smita for medication.
Aggravation of Acne
Hormones. Androgens are hormones that increase in boys and girls during puberty and cause the sebaceous glands to enlarge and make more sebum. Hormonal changes related to pregnancy and the use of oral contraceptives also can affect sebum production.
Cheeks Acne
Chin and jawline acne is often caused by fluctuations in hormones, which means a disruption with your endocrine system. It's typically a result of excess androgens, which overstimulate the oil glands and clog pores. ... Hormone imbalance can also be related to diet.
Discuss your problems.
We have solution.
(leave message on the below button, We will get back to you soon).
1/6
Copyright © 2018 slimandshineclinic - All Rights Reserved.
Powered by r market research